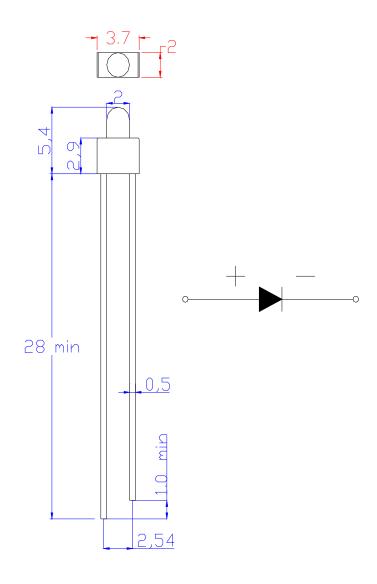


WCN-104HR2-100N

SPECIFICATION

	CUSTOMER		
Prepared by	Checked by	Approved by	Confirmed
LiuGuo	ZhangChun	757,	
2018-11-9	2018-11-9		

ATTENTION
OBSERVE PRECAUTIONS
FOR HANDLING
ELECTROSTATIC
SENSITIVE DEVICES



Selection Guide

	Dice			lv(mcd)(lf=20mA)			Viewing engle
Part No.	Raw Material	Emitted Color	Lens Color	Min	Тур	Max	Viewing angle (2θ1/2)
WCN-104HR2-100N	AlGalnP	Red	Diffused lens	2		40	100°

Package Outline

NOTES:

- All dimensions units are millimeters ; All dimensions tolerances are ± 0.2 mm unless otherwise noted.

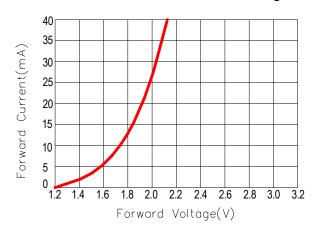
Absolute Maximum Ratings at Ta=25℃

Parameter	Symbol	Rating	Units
Power Dissipation	Pd	48	mW
Forward current	IF	20	mA
Peak Forward Current	IFP	100	mA
Reverse voltage	VR	5	V
Electrostatic Discharge	ESD	1000	V
Operating temperature	Topr	-30~+85	${\mathbb C}$
Storage temperature	Tstg	-40 ~+100	$^{\circ}\mathbb{C}$

Electrical/Optical characteristics at Ta=25℃

láo no	4004 ooudition		Value			1114
Item	test condition	Symbol	Min.	Тур.	Max.	Unit
		Vf	1.8		2.0	V
Forward voltage	If=20mA		2.0		2.2	V
			2.2		2.4	V
		0mA Iv	2		7	mcd
	If=20mA		7		15	mcd
Luminous intensity			15		30	mcd
			30		40	mcd
		λd	620		622.5	nm
Dominant wavelength	If=20mA		622.5		625	nm
			625		627.5	nm
Reverse current	Vr=5V	lr			10	μΑ
Viewing angle at 50% lv	If=20mA	2 01/2		100		Deg

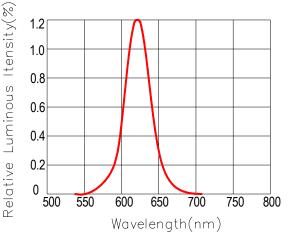
NOTE:

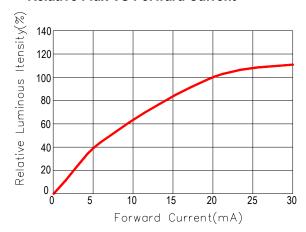

- 1.1/10 Duty cycle, 0.1ms pulse width.
- 2. The above forward voltage measurement allowance tolerance is 0.1V.
- 3. the above luminous intensity measurement allowance tolerance $\pm 10\%$.

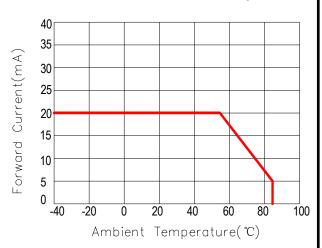
REVISION: A0

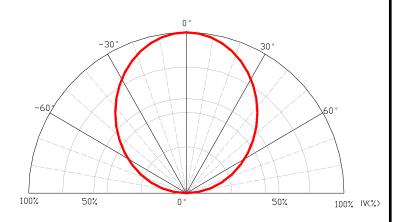


Optical characteristics curves


Forward Current VS Forward Voltage

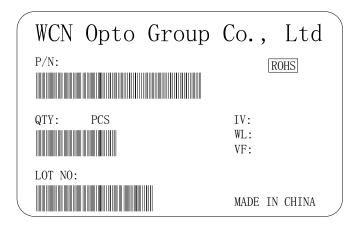

Relative Flux VS Ambient Temperature


Relative Spectral Distribution


Relative Flux VS Forward Current

Forward Current VS Ambient Temperature

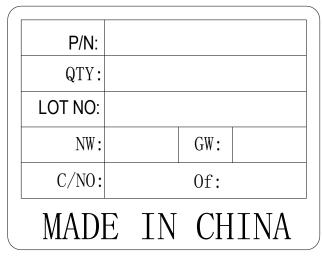
Typical Spectral Distribution



WCN-104HR2-100N WWW.WCNOPTO.NET **REVISION: A0**



Label1:



P/N	Part Number
QTY	Packing Quantity
LOT NO	Made Date
IV	Luminous intensity
WL	Dominant wavelength
VF	Forward Voltage

Label2:

Label3:

P/N	Part Number
QTY	Packing Quantity
LOT NO	Made Date
NW	Net weight
GW	Gross weight
C/NO	Container number

Test items and results of reliability

Туре	Test Item	Test Conditions	Note	Number of Damaged
	Temperature Cycle	-20°C 30min ↑↓ 105°C 30min	100 cycle	0/22
	Thermal Shock	-20°C 15min ↑↓ 105°C 15min	100 cycle	0/22
imental ence	High Humidity Heat Cycle	30°C ⇔ 65°C 90%RH 24hrs/1cycle	10 cycle	0/22
Environmental Sequence	High Temperature Storage	Ta=105℃	1000 hrs	0/22
	Humidity Heat Storage	Ta=60°C RH=90%	1000 hrs	0/22
	Low Temperature Storage	Ta=-30℃	1000 hrs	0/22
Operation Sequence	Life Test	Ta=25℃ IF=20mA	1000 hrs	0/22
	High Humidity Heat Life Test	60℃ RH=90% IF=10mA	500 hrs	0/22
	Low Temperature Life Test	Ta=-20℃ IF=20mA	1000 hrs	0/22

PRECAUTIONS

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component. Lead-forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1)

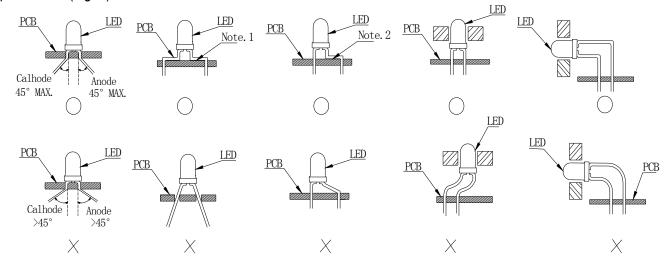
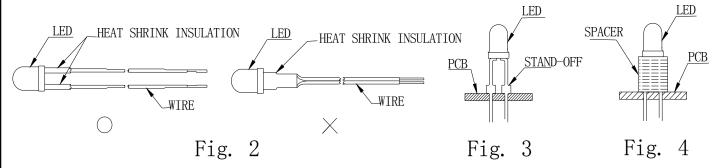
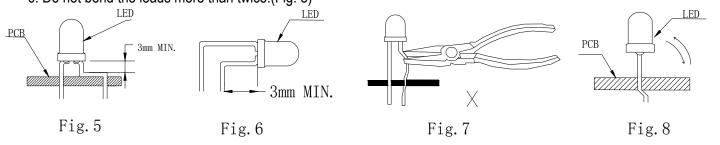
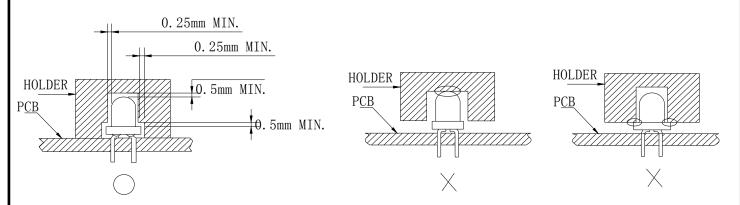




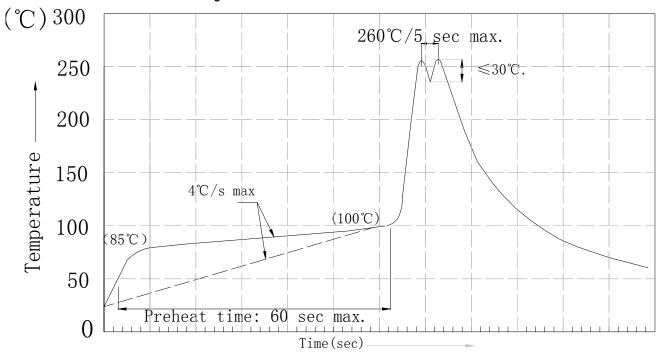
Fig. 1

- "O" Correct mounting method "x" Incorrect mounting method
- 2. When soldering wire to the LED, use individual heat-shrink tubing to insulate the exposed leads to prevent accidental contact short-circuit.(Fig. 2)
- 3. Use stand-offs (Fig. 3) or spacers (Fig. 4) to securely position the LED above the PCB.

- 4. Maintain a minimum of 3mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)
- 5. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB.(Fig.
 - 6. Do not bend the leads more than twice.(Fig. 8)



7. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering.


8/9

WCN-104HR2-100N WWW.WCNOPTO.NET **REVISION: A0**

- 8. The tip of the soldering iron should never touch the lens epoxy.
- 9. Through-hole LEDs are incompatible with reflow soldering.
- 10. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to ntense heat, please check with WCN for compatibility.
 - 11. Recommended Wave Soldering Profiles:

Notes:

- 1.Recommend pre-heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C.
 - 2.Peak wave soldering temperature between 250°C ~ 260°C for 3 sec (5 sec max).
 - 3.Do not apply stress to the epoxy resin while the temperature is above 85° C.
 - 4. Fixtures should not incur stress on the component when mounting and during soldering process.
 - 5. No more than one time to pass the wave soldering.